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ABSTRACT: Fluorescence correlation spectroscopy (FCS) has
become an important tool in polymer science. Among various
other applications the method is often applied to measure the
hydrodynamic radius and the degree of fluorescent labeling of
polymers in dilute solutions. Here we show that such
measurements can be strongly affected by the molar mass
dispersity of the studied polymers and the way of labeling. As
model systems we used polystyrene and poly(methyl meth-
acrylate) synthesized by atom transfer radical polymerization or
free-radical polymerization. Thus, the polymers were either end-
labeled bearing one fluorophore per chain or side-labeled with a
number of fluorophores per chain proportional to the degree of
polymerization.The experimentally measured autocorrelation curves were fitted with a newly derived theoretical model that uses
the Schulz−Zimm distribution function to describe the dispersity in the degree of polymerization. For end-labeled polymers
having a molecular weight distribution close to Schulz−Zimm, the fits yield values of the number-average degree of
polymerization and the polydispersity index similar to those obtained by reference gel permeation chromatography. However, for
the side-labeled polymers such fitting becomes unstable, especially for highly polydisperse systems. Brownian dynamic
simulations showed that the effect is due to a mutual dependence between the fit parameters, namely, the polydispersity index
and the number-average molecular weight. As a consequence, an increase of the polydispersity index can be easily misinterpreted
as an increase of the molecular weight when the FCS autocorrelation curves are fitted with a standard single component model,
as commonly done in the community.

Fluorescence correlation spectroscopy (FCS) is a sensitive
and selective technique for studying the mobility of

fluorescent species, such as small molecules, macromolecules,
or nanoparticles, in various environments.1 Commonly, the
diffusion coefficient, fluorescent brightness, and concentration
of the fluorescent species are measured and used to assess their
size, aggregation behavior, and interactions with other species
or to obtain information about the surrounding environment.1

While initially developed2 and still predominantly used as a tool
in molecular and cell biology3,4 or to investigate colloidal
systems,5 during the past decade FCS has also become an
established technique in polymer science.6 For example,
diffusion of molecular and macromolecular tracers in polymer
solutions,7−10 cross-linked polymer networks,11−13 and bulk
polymers14 has been studied. FCS was also applied to
investigate the interfacial diffusion of homo- and copoly-
mers,15,16 their self-assembly in micelles17,18 or vesicles,19,20 and
even the process of polymerization itself.21 One of the most
characteristic properties of polymers is their molar mass

dispersity. However, it is a common perception that compared
to some classical techniques such as gel permeation
chromatography (GPC) or photon correlation spectroscopy
(PCS) FCS is not sensitive to moderate variations in the size of
the studied polymers and thus to their molar mass dispersity.
The reduced sensitivity is related to the rather slow, hyperbolic
decay of the FCS autocorrelation function compared to the
exponential decay in PCS. Thus, in many FCS studies of
polymers the effect of polydispersity is neglected. Moreover,
the method was never applied to explicitly measure the
polydispersity index of flexible chain polymers in solutions. In
this letter we show that in many practical cases polydispersity
may strongly affect the experimentally measured FCS
autocorrelation curves. If not properly accounted for, this
leads to errors in the estimated average molecular weight. Here
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a key parameter is the kind of fluorescent labeling, e.g., end-
chain labeling with one fluorophore per polymer chain vs side
chain labeling, with a number of fluorophores proportional to
the degree of polymerization. We explore these effects by
deriving a new theoretical model for the FCS autocorrelation
function in the case of polydisperse polymers and comparing it
to experimentally measured data and Brownian dynamic
simulations.
In a typical FCS experiment, a laser beam is tightly focused

into a solution of the fluorescent species via a high numerical
aperture microscope objective. The emitted fluorescence is
collected by the same objective and, after passing through a
dichroic mirror, an emission filter, and a confocal pinhole,
delivered to a fast and sensitive detector, usually an avalanche
photo diode. These arrangements lead to the formation of a
subfemtoliter observation volume Vobs with a Gaussian ellipsoid
shape. Only fluorescence emitted from species inside Vobs is
detected. The Brownian diffusion of the fluorescent species in
and out of the observation volume Vobs creates temporal
fluctuations in the detected fluorescence intensity δF(t) that are
recorded and evaluated in terms of an autocorrelation function
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For an ensemble of identical, freely diffusing fluorescent
species, not affected by photophysical processes such as
transition to a triplet state, G(τ) has the following analytical
form1
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Here, ⟨N⟩ is the average number of fluorescent species in the
observation volume; S = z0/r0 is the ratio of the axial to the
radial dimension of Vobs; and τD is the species’ diffusion time
that is directly related to their diffusion coefficient
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and by the Stokes−Einstein relation to their hydrodynamic
radius.
For a more complex system, in which the studied fluorescent

species are not identical, the autocorrelation function can be
expressed as
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Here P(τD) is a size distribution function describing the
number fraction of species with certain size and therefore
certain diffusion coefficient and diffusion time τD. The
fluorescent brightness distribution function ε(τD) accounts for
the fact that the studied species may have also different
fluorescent brightness, e.g., due to a different number of
fluorophores attached to them.
Equation 5 was previously considered by Starchev et al.22

who had approximated it by a sum of a large number (∼30) of

terms with discrete diffusion times using the method of
histograms. While representing an experimental autocorrelation
curve in this way is an ill-posed problem, by imposing
additional regularization and constraint conditions the authors
were able to estimate the polydispersity of dispersed colloidal
particles. Following a similar approach, Sengupta et al.23 have
used a maximum entropy method based fitting routine
(MEMFCS) to analyze FCS data for polydisperse systems in
terms of a quasi-continuous distribution of diffusing compo-
nents. Here we use a different approach, and instead of
discretizing eq 5, we derive analytical expressions for P(τD) and
ε(τD). In the case of fluorescently labeled synthetic polymers
dissolved in a good solvent this can be done by correlating the
diffusion time of an individual polymer chain to its degree of
polymerization and then applying a common continuous
distribution function to describe the dispersity in the degree
of polymerization.
In dilute solutions the dynamics of a polymer chain with a

high degree of polymerization is described by the Zimm
model.24 In the framework of this model, a scaling dependence
of the chain diffusion coefficient D on the degree of
polymerization X can be established. However, this relation is
only an approximation and cannot be applied to flexible chains
in good solvents due to the subtle influence of excluded volume
effects. Thus, we used the empirical relation

= ν−D KX (6)

which was shown to describe very well experimental data
obtained by PCS.25,26 K and ν are constants, which depend on
the polymer and the solvent and can be obtained by fitting
published data25,26 on D(X) with eq 6 as discussed below and
in the Supporting Information (SI). Substituting eq 6 in eq 4
results in
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Next, we consider the fluorescent brightness distribution
function ε(τD) that is related to the number of fluorophores
attached to a polymer chain with certain degree of polymer-
ization X and thus certain diffusion time τD. Two common
cases should be considered here:

(i) End chain labeling with one fluorophore per polymer
chain and therefore ε(X) = const.

(ii) Side chain labeling, with a number of fluorophores
proportional to the degree of polymerization and ε(X) =
F(X), where F(X) is a proportionality function, depend-
ing on further specifics of the labeling procedure as
discussed below.

With these considerations in mind and by inserting eq 7 in
eq 3 to obtain an analytical expression for M(τ; X), eq 5 can be
rewritten in the form
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Here P(X) is a continuous distribution function describing the
dispersity in the degree of polymerization of the studied
polymer system. For example, for polymers synthesized by
atom transfer radical polymerization (ATRP) it was theoret-
ically predicted that P(X) should be a Poisson function.
However, this prediction is based on the assumption of 100%
monomer conversion and no side reactions27 and thus is often
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not applicable to real systems. A more realistic distribution
function describing the dispersity in the degree of polymer-
ization is the Schulz−Zimm distribution24
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with ⟨X⟩ being the number-average degree of polymerization, Γ
the gamma function, and ξ = 1/(PDI − 1) the chain coupling
coefficient that is related to the polydispersity index PDI = Mw/
Mn. Here Mw is the weight-average molecular weight and Mn
the number-average molecular weight.
We used eq 8 to fit experimental autocorrelation curves

measured for dilute toluene solutions of fluorescently labeled
PS and PMMA and compared the obtained values of ⟨X⟩ and
PDI with the results of GPC characterizations. A detailed
description of the polymer synthesis and their characterization
is given in the SI. The FCS experiments were performed on a
commercial setup (Zeiss, Germany) consisting of the module
ConfoCor2 and an inverted microscope model Axiovert 200,
following a procedure reported earlier14 and described in detail
in the SI.
First, several polymers (Table 1) prepared by atom transfer

radical polymerization (ATRP) were studied. The fluorophore
was present in the initiator (SI), and thus one fluorophore was
attached per polymer chain. Typical experimental autocorrela-
tion curves and their corresponding fits using eq 8 are shown in
Figure 1. The fitting was done using a standard least-squares
nonlinear fitting procedure and numerically evaluating the
integrals in eq 8 at each iteration step. Due to the one
fluorophore per chain labeling the chain fluorescent brightness
does not depend on the degree of polymerization, ε(X) =
const. This simplifies eq 8 and leaves only the average number
of fluorescent species in the observation volume ⟨N⟩, the
number-average degree of polymerization ⟨X⟩, and the
polydispersity index PDI as fit parameters. For comparison
the experimental data were also fitted with a single-component,
“monodisperse” model (eq 2) as commonly done in previous
studies. In this case the fit parameters were only ⟨N⟩ and X. For
both types of fits the values of KPS = 1.598 × 10−9 and ξPS =
0.512 for PS and KPMMA = 1.885 × 10−9 and ξPMMA = 0.526 for
PMMA were used to calculate the chain diffusion coefficient
from its degree of polymerization. These values were obtained
by fitting experimental data25,26 on D(X) with eq 6. Only data
in the relatively narrow X range covering the values of X of the
polymers listed in Table 1 were used (SI).
As can be seen in Figure 1a for a sample with moderate

molar mass dispersity, PMMA-I (PDIGPC = 1.33, Table 1), the
polydisperse model provides distinctly better fit (lower and
uniform residuals) than the monodisperse model. On the other
hand as shown in Figure 1b, for polymers with lower molar
mass dispersity, e.g., PS-I (PDIGPC = 1.21, Table 1), the

difference between the fits with the two models is barely visible.
Nevertheless, even in this case the residuals (lower panel in
Figure 1b) highlight a slight improvement in fitting when
applying the polydisperse model. Moreover as shown in Table
1 for all studied polymers the polydisperse model yielded lower
χ2 values28 and therefore better fits than the monodisperse
model. These results indicate that FCS is sensitive even on
small polydispersities of polymers. In the same time, our
findings also demonstrate the existence of a lower border of
PDI ≤ 1.2 below which no significant difference between the
standard monodisperse model (eq 2) and the polydisperse
model (eq 8) can be detected. The results from both types of
fits for all studied samples are summarized in Table 1 and
compared to the respective GPC data (SI). Fitting experimental
FCS data of PS-I and PMMA-I with the polydisperse model

Table 1. Degree of Polymerization and Polydispersity Index of End-Labeled PMMA and PS Polymers as Evaluated by GPC and
FCSa

GPC FCS: poly. fit (eq 8) FCS: mono. fit (eq 2)

sample ⟨X⟩ PDI ⟨X⟩ PDI χ2 × 10−5 XMono. χ2 × 10−5

PMMA-I 149 1.33 111 ± 2 1.34 ± 0.07 1.5 102 ± 5 3.3
PMMA-II 188 1.17 145 ± 4 1.32 ± 0.1 3.2 133 ± 7 4.6
PS-I 76 1.21 62 ± 3 1.17 ± 0.13 11.6 60 ± 3 12.1
PS-II 87 1.24 81 ± 3 1.49 ± 0.12 3.8 72 ± 4 6.9

aThe parameter (χ2) represents the goodness of the fit.

Figure 1. Experimental autocorrelation curves (symbols) measured in
dilute (∼10 nM) toluene solutions of the polymers PMMA-I (a) and
PS-I (b). The lines in the upper panels represent the corresponding
fits with the polydisperse (eq 8, dash dotted line) and the
monodisperse (eq 2, straight line) models. The low panels show the
corresponding residuals.
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(Figure 1) yielded PDI values that within the error bars
(nonlinear regression parameter confidence intervals of 95%)
were identical to the corresponding GPC values. We emphasize
here that the derived polydisperse FCS model (eq 8) relies on
the similarity of the molar mass dispersity of the polymers to an
ideal Schulz−Zimm distribution. PMMA-II and PS-II are
examples where the size distribution deviated significantly
from the Schulz−Zimm distribution (Figure S3c and d, SI).
Correspondingly, the FCS yielded PDI values only in mediocre
agreement with those from GPC. On the other hand, the good
agreement between the GPC and FCS data for the sample
PMMA-I shows that FCS can be used for measuring the molar
mass dispersity of polymers even when the molar mass
distribution moderately deviates from an ideal Schulz−Zimm
distribution (Figure S3a, SI). With respect to the values of the
average degree of polymerization ⟨X⟩ obtained with the
polydisperse FCS model (Table 1) for PS the agreement
with the corresponding GPC values is much better than for
PMMA. This is probably caused by more accurate data for D vs
X for PS than for PMMA (Figure S2, SI). At this point, it is also
instructive to consider the results obtained by fitting the
experimental FCS autocorrelation curves with the simple
monodisperse model (eq 2) as is commonly done in most
existing studies. The results summarized in Table 1 indicate
that such a fit yields a degree of polymerization value that is
relatively close to the number-average value obtained by the
polydisperse FCS model fit or by GPC. Thus, the application of
this simple FCS model to single fluorophore-labeled polymers
is relatively safe and provides reasonable results.
The situation changes qualitatively for side chain labeling.

Here the number of fluorophores per chain is proportional to
the degree of polymerization. In such a case the dependence of
the individual chain brightness on the degree of polymerization
ε(X) = F(X) has to be considered, which complicates eq 8
significantly. The physical picture is that the longer chains carry
more fluorophores than the shorter ones and thus contribute
stronger to the FCS autocorrelation curve, much as it happens
in PCS. In order to study such a situation experimentally, we
copolymerized styrene and methacrylate functionalized BOD-
IPY dye in a free radical solution polymerization process
yielding the polymer PS-III (SI). GPC revealed a number-
average degree of polymerization ⟨XGPC⟩ = 1863 and a PDIGPC
= 2.49. Next, we recorded experimental FCS autocorrelation
curves for dilute toluene solutions of PS-III and fitted them
with eq 8. We used values of KPS = 2.304 × 10−9 and νPS =
0.581 to describe the relation between the diffusion coefficient
and degree of polymerization (eq 6) for this high molecular
weight sample (SI). Furthermore, the fits were done assuming
linear dependence between the chain fluorescent brightness
(number of fluorophores per chain) and the degree of
polymerization, i.e., ε(X) = AX, with A = const. Such fitting,
however, was not stable with respect to the starting values of
the fitting parameters and thus failed to produce values of the
degree of polymerization ⟨XFCS⟩ and polydispersity index
PDIFCS consistent with the GPC results.
Thus, in order to prove the general validity of our approach

and identify possible experimental pitfalls, we simulated “ideal
experimental FCS autocorrelation curves” for a system with
perfect Schulz−Zimm distribution and chain fluorescent
brightness ε(X) = AX and fitted them with eq 8. The
simulation was done by adapting a previously proposed fast
simulation algorithm29 that produces autocorrelation curves for
freely diffusing point-like particles with given diffusion

coefficient and fluorescent brightness (SI). Briefly, the
Schulz−Zimm distribution (eq 9) was used as a probability
function for the generation of a chain with degree of
polymerization X. To model the statistical labeling every
100th repeat unit was set as carrying a fluorophore, thus
allowing only integer numbers of fluorophores per chain. This
chain was then considered as a point-like particle with diffusion
coefficient given by eq 6 and fluorescent brightness essentially
linearly proportional to X. By generating a high number (∼2 ×
105) of such chains/particles and propagating them with
Brownian dynamics procedure through the FCS probing
volume,29 a highly accurate autocorrelation curve was
produced. Using this procedure we simulated experimental
autocorrelation curves for PS with number-average degree of
polymerization ⟨XSim.⟩ = 1000 and different values of PDISim.
ranging from 1.0 to 2.5. Typical curves and their fits with eq 8
assuming ε(X) = AX are shown in Figure 2, and the

corresponding fit parameters are summarized in Table 2. The
data show that in all cases the fitting yielded ⟨X⟩ and PDI
values that within the fit errors are identical to the predefined
values used in the simulations.
However, another important result from the fitting of the

simulated autocorrelation curves (Table 2) is that when
increasing the molar dispersity of the simulated polymer
system, PDISim., from 1.0 to 2.5 the errors of the obtained fit
parameters ⟨XFCS⟩ and PDIFCS (for a nonlinear regression

Figure 2. Simulated “experimental” FCS autocorrelation curves for
statistically labeled polymers with different polydispersities (symbols)
and their fits (lines) with eq 8. Also see Figure S5 (SI) for more
details.

Table 2. Degree of Polymerization and the Polydispersity
Index Obtained with FCS by Fitting Simulated
Autocorrelation Curves for Statistically Labeled Polymers
with Degree of Polymerization ⟨XSim.⟩ = 1000 and PDISim.
Ranging from 1.0 to 2.5

polydisperse fit (eq 8) monodisperse fit (eq 2)

PDISim. PDIFCS ⟨XFCS⟩ XMono.

1.0 1.02 ± 0.02 979 ± 23 1031 ± 2
1.1 1.12 ± 0.04 983 ± 50 1201 ± 4
1.5 1.39 ± 0.15 1109 ± 162 1798 ± 13
2.0 1.79 ± 0.38 1150 ± 312 2607 ± 24
2.5 3.2 ± 2.22 762 ± 603 3458 ± 45
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parameter confidence intervals of 95%) increase from roughly
2% to more than 80% (Table 2). This suggests an increasing
mutual dependence between those two fit parameters. This
mutual dependence is also evident when considering the
autocorrelation curves shown in Figure 2. While all curves
represent polymers with the same number-average degree of
polymerization ⟨X⟩ = 1000, the increase of PDI has the same
effect as an increase of ⟨XFCS⟩, namely, shifts the decay of the
correlation curves to higher lag times. The reason for this effect
is the squaring of the fluorescent brightness ε(X) in eq 8 which
results in a stronger weighting of the longer, higher labeled
polymer chains. This result clearly demonstrates the danger of
using the simple monodisperse fit model (eq 2) with respect to
such FCS data as it misinterprets the increase of PDI as an
increase in the degree of polymerization (Table 2).
Furthermore, our data suggest that for such ideally statistically
labeled polymer systems a simple monodisperse fit will yield an
X value that is even larger than the weight-average degree of
polymerization. To confirm this effect on a real polymer system
we performed a monodisperse fit (eq 2) to the experimentally
measured FCS auto correlation curve for PS-III. As shown in
Figure 3 such a fit seems to represent rather well the

experimental data but overestimates significantly the degree
of polymerization. It yields a value of X = 6670 that is
significantly larger than the GPC result: Xn = 1863, Xw = 4638.
We now return to the polydisperse model FCS fit of the real

polymer sample PS-III. It should be noted that the
polydispersity of PS-III as measured by GPC is PDIGPC =
2.49. A comparison with the simulated ideal samples (Table 2)
shows that for PDISim. of 2.5 the FCS fit errors reach 80%. On
the other hand, the real sample does not have an ideal Schulz−
Zimm molar mass distribution (Figure 3), and the dependence
between the number of fluorophores per chain and the degree
of polymerization is not perfectly linear as confirmed by
fractionation (see SI for details). Therefore, it is not surprising
that the measured autocorrelation curve cannot be appropri-
ately fitted with the model of eq 8. Thus, our results indicate

that for highly polydisperse systems, with a PDI above 2.0, the
model (eq 8) may not always provide a stable fit to
experimental FCS data of statistically labeled polymers.
Nevertheless, in order to further explore the limits of the
model we applied it to fit the experimental data for sample PS-
III, by fixing one of the parameters, either ⟨X⟩ or PDI, during
the fitting procedure to its GPC value (SI). This yielded ⟨XFCS⟩
= 1960 ± 47 and PDIFCS = 2.60 ± 0.05, values that are basically
identical to the GPC values showing the successful
representation of the experimental data with eq 8. This is
further illustrated in Figure 3 that compares the experimental
autocorrelation curve of sample PS-III with a calculated curve
using eq 8 with ⟨X⟩ or PDI fixed to their GPC values.
In conclusion, we have shown that when FCS is used to

characterize fluorescently labeled polymers their polydispersity
and type of fluorescent labeling play an important role. This can
make the determination of the polymer hydrodynamic radius
and thus estimation of the molecular weight nontrivial,
particularly when experimental autocorrelation curves for
polydisperse polymers are fitted with a simple monodisperse
model as commonly carried out in existing studies. For
polydisperse polymers bearing one (or a constant number)
fluorophore per chain such fitting will provide the number-
average value of the hydrodynamic radius. In contrast, if the
number of fluorophores per chain is proportional to the degree
of polymerization the fit will yield a significantly larger value.
To address this issue we have derived a new model for the FCS
autocorrelation function that uses the Schulz−Zimm distribu-
tion function to describe the dispersity in the degree of
polymerization and an explicit relation to connect the chain
diffusion coefficient to its molecular weight. The validity of the
model and its limits were explored by comparing it to
experimentally measured data and Brownian dynamic simu-
lations.

■ ASSOCIATED CONTENT
*S Supporting Information
Synthesis of the MMA-BODIPY monomers, synthesis of
BODIPY ATRP initiator, synthesis of PS and PMMA polymers,
FCS, NMR, and GPC characterizations. This material is
available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: koynov@mpip-mainz.mpg.de.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The financial support from DFG (SFB 1066, Q2) is gratefully
acknowledged. R. H. Staff gratefully acknowledges financial
support from the Fonds der Chemischen Industrie.

■ REFERENCES
(1) Rigler, R.; Elson, E. Fluorescence correlation spectroscopy: theory
and applications; Springer series in chemical physics, 65; Springer:
Berlin; New York, 2001.
(2) Magde, D.; Webb, W. W.; Elson, E. Phys. Rev. Lett. 1972, 29, 705.
(3) Hess, S. T.; Huang, S. H.; Heikal, A. A.; Webb, W. W.
Biochemistry 2002, 41, 697−705.
(4) Kim, S. A.; Schwille, P. Curr. Opin. Neurobiol. 2003, 13, 583−590.
(5) Koynov, K.; Butt, H. J. Curr. Opin. Colloid Interface Sci. 2012, 17,
377−387.

Figure 3. Experimental FCS autocorrelation curve measured in dilute
toluene solutions of the polymer PS-III (symbols) and calculated FCS
curve (solid line) using the polydisperse FCS model for a statistically
labeled polymer (eq 8). The values of ⟨X⟩ and PDI in eq 8 were fixed
to the corresponding GPC values. A fit with a simple monodisperse
model (eq 2, dashed line) is also shown for comparison. The inset
shows the GPC trace of PS-III (black line) and the fit with a Schulz−
Zimm distribution (red line).

ACS Macro Letters Letter

DOI: 10.1021/mz500638e
ACS Macro Lett. 2015, 4, 171−176

175

http://pubs.acs.org
mailto:koynov@mpip-mainz.mpg.de
http://dx.doi.org/10.1021/mz500638e


(6) Woll, D. RSC Adv. 2014, 4, 2447−2465.
(7) Grabowski, C. A.; Mukhopadhyay, A. Macromolecules 2008, 41,
6191−6194.
(8) Cherdhirankorn, T.; Best, A.; Koynov, K.; Peneva, K.; Muellen,
K.; Fytas, G. J. Phys. Chem. B 2009, 113, 3355−3359.
(9) Zettl, U.; Hoffmann, S. T.; Koberling, F.; Krausch, G.; Enderlein,
J.; Harnau, L.; Ballauff, M. Macromolecules 2009, 42, 9537−9547.
(10) Szymanski, J.; Weiss, M. Phys. Rev. Lett. 2009, 103, 038102.
(11) Michelman-Ribeiro, A.; Boukari, H.; Nossal, R.; Horkay, F.
Macromolecules 2004, 37, 10212−10214.
(12) Raccis, R.; Roskamp, R.; Hopp, I.; Menges, B.; Koynov, K.;
Jonas, U.; Knoll, W.; Butt, H. J.; Fytas, G. Soft Matter 2011, 7, 7042−
7053.
(13) Vagias, A.; Raccis, R.; Koynov, K.; Jonas, U.; Butt, H. J.; Fytas,
G.; Kosovan, P.; Lenz, O.; Holm, C. Phys. Rev. Lett. 2013, 111, 088301.
(14) Cherdhirankorn, T.; Harmandaris, V.; Juhari, A.; Voudouris, P.;
Fytas, G.; Kremer, K.; Koynov, K. Macromolecules 2009, 42, 4858−
4866.
(15) Zhao, J.; Granick, S. J. Am. Chem. Soc. 2004, 126, 6242−6243.
(16) Yang, J. F.; Zhao, J.; Han, C. C.Macromolecules 2008, 41, 7284−
7286.
(17) Bonne, T. B.; Ludtke, K.; Jordan, R.; Stepanek, P.; Papadakis, C.
M. Colloid Polym. Sci. 2004, 282, 1425−1425.
(18) Bonne, T. B.; Ludtke, K.; Jordan, R.; Papadakis, C. M.
Macromol. Chem. Phys. 2007, 208, 1402−1408.
(19) Mueller, W.; Koynov, K.; Fischer, K.; Hartmann, S.; Pierrat, S.;
Basche, T.; Maskos, M. Macromolecules 2009, 42, 357−361.
(20) Jaskiewicz, K.; Larsen, A.; Schaeffel, D.; Koynov, K.;
Lieberwirth, I.; Fytas, G.; Landfester, K.; Kroeger, A. ACS Nano
2012, 6, 7254−7262.
(21) Dorfschmid, M.; Mullen, K.; Zumbusch, A.; Woll, D.
Macromolecules 2010, 43, 6174−6179.
(22) Starchev, K.; Buffle, J.; Perez, E. J. Colloid Interface Sci. 1999,
213, 479−487.
(23) Sengupta, P.; Garai, K.; Balaji, J.; Periasamy, N.; Maiti, S.
Biophys. J. 2003, 84, 1977−1984.
(24) Rubinstein, M.; Colby, R. H. Polymer Physics; Oxford University
Press: USA, 2003.
(25) Huber, K.; Bantle, S.; Lutz, P.; Burchard, W. Macromolecules
1985, 18, 1461−1467.
(26) Termeer, H. U.; Burchard, W.; Wunderlich, W. Colloid Polym.
Sci. 1980, 258, 675−684.
(27) Lund, R.; Willner, L.; Pipich, V.; Grillo, I.; Lindner, P.;
Colmenero, J.; Richter, D. Macromolecules 2011, 44, 6145−6154.
(28) Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P.
Numerical Recipes: The Art of Scientific Computing, 3rd ed.; Cambridge
University Press: New York, 2007.
(29) Schmitz, R.; Yordanov, S.; Butt, H.-J.; Koynov, K.; Dünweg, B.
Phys. Rev. E 2011, 84, 066306.

ACS Macro Letters Letter

DOI: 10.1021/mz500638e
ACS Macro Lett. 2015, 4, 171−176

176

http://dx.doi.org/10.1021/mz500638e

